chronometer Documentation
Release 1.0

Arthur Skowronek

January 24, 2015






Contents

1 Examples 3
2 API Reference 5

2.1 APL e e e 5
3 Indices and tables 7

Python Module Index 9







chronometer Documentation, Release 1.0

Yet another simple time measurement tool for Python. The goal of this implementation is to avoid as much cruft as
possible. The current version is 73 lines of actual code long, leaving out blank, doc and comment lines. Chronometer
provides only functions to measure how much wall-clock time has passed between starting and stopping the timer.

Nothing more. Nothing less.

Chronometer tries to stay accurate to the actual time spent between starting and stopping the timer by utilizing a
monotonic timer. According to the linux manual a monotonic timer is subject to time adjustments so it stays accurate
but will never move backwards or jump. It will be adjusted gradually and always moves forward as long as the system
runs.

Contents 1



chronometer Documentation, Release 1.0

2 Contents



CHAPTER 1

Examples

Easy:

import time
from chronometer import Chronometer

long_running_task = lambda: time.sleep(3.)

with Chronometer () as t:
long_running_task () # that will take a few seconds.
print ('Phew, that took me {:.3f} seconds!'.format (float(t)))

Advanced:

from time import sleep
from chronometer import Chronometer

counter = 0
def long_running_task_that_can_fail():
global counter
counter += 1
sleep(2.)
return counter > 3

with Chronometer () as t:
while not long_running_task_that_can_fail():
print ('Failed after {:.3f} seconds!'.format (t.reset()))
print ('Success after {:.3f} seconds!'.format (float(t)))

Ridiculous:

import asyncio
from chronometer import Chronometer

class PingEchoServerProtocol (asyncio.StreamReaderProtocol) :

def _ init_ (self):
super () .__init__ (asyncio.StreamReader (), self.client_connected)
self.reader, self.writer = None, None
self.latency_timer = Chronometer ()

def client_connected(self, reader, writer):
self.reader, self.writer = reader, writer




chronometer Documentation, Release 1.0

asyncio.async (self.ping_loop())
asyncio.async (self.handler())

@asyncio.coroutine

def send(self, data):
self.writer.write(data.encode('utf-8") + b'\n"')
yield from self.writer.drain()

@asyncio.coroutine
def ping_loop(self):
yield from asyncio.sleep(5.)
while True:
if self.latency_timer.stopped:
self.latency_timer.start ()
yield from self.send('PING (send me PONG!) ")

sleep_duration = max (2., 10. - self.latency_timer.elapsed)
yield from asyncio.sleep(sleep_duration)

@asyncio.coroutine
def handler (self):
while True:

data = (yield from self.reader.readline())
if data[:4] == b'PONG' and self.latency_timer.started:
yield from self.send(('Latency: {:.3f}s'
.format (self.latency_timer.stop())))
1 = asyncio.get_event_loop ()

@asyncio.coroutine
def startup():
s = (yield from l.create_server (lambda: PingEchoServerProtocol (),
host="localhost', port=2727))
print ('Now telnet to localhost 2727")
yield from s.wait_closed()

l.run_until_complete (startup())

4 Chapter 1. Examples



CHAPTER 2

API Reference

Just go read the source. Seriously. It’s not that hard. If you still insist on having a documentation, here it is:

2.1 API

class chronometer.Chronometer (timer=monotonic)
Simple timer meant to be used for measuring how much time has been spent in a certain code region.

start ()
Starts the timer.

Returns Returns the timer itself.
Return type Chronometer
Raises TimerAlreadyStartedError If the timer is already running.

stop ()
Stops the timer.

Returns Time passed since the timer has been started in seconds.
Return type float
Raises TimerAlreadyStoppedError If the timer is already stopped.

reset ()
Resets the timer.

Returns Elapsed time before the timer was reset.
Return type float

elapsed
Returns time passed in seconds.

Returns Time passed since the timer has been started in seconds.
Return type float

stopped
Returns if the timer is stopped or not.

Returns True if the timer is stopped and False otherwise.

Return type bool




chronometer Documentation, Release 1.0

started
Returns if the timer is running or not.

Returns True if the timer is running and False otherwise.
Return type bool

class chronometer.RelaxedStartChronometer (timer=monotonic)
Relaxed version which won’t raise an exception on double starting the timer.

start ()
Starts the timer or just returns if the timer is already running.

Returns Returns the timer itself.
Return type RelaxedStartChronometer

class chronometer.RelaxedStopChronometer (timer=monotonic)

Relaxed version which won’t raise an exception on double stopping the timer.

stop ()
Stops the timer or just returns if the timer is already stopped.

Returns Time passed since the timer has been started in seconds.
Return type float

class chronometer.RelaxedChronometer (timer=monotonic)
Ultra relaxed version which won’t throw any exceptions on its own.

exception chronometer.ChronoRuntimeError
Base exceptions for errors which happened inside Chronometer.

exception chronometer.ChronoAlreadyStoppedError
Raised when trying to stop a stopped timer.

exception chronometer .ChronoAlreadyStartedError
raised when trying to start a started timer.

Chapter 2. API Reference



CHAPTER 3

Indices and tables

* genindex
* modindex

e search




chronometer Documentation, Release 1.0

8 Chapter 3. Indices and tables



Python Module Index

C

chronometer, 5




chronometer Documentation, Release 1.0

10 Python Module Index



Index

C

ChronoAlreadyStartedError, 6
ChronoAlreadyStoppedError, 6
Chronometer (class in chronometer), 5
chronometer (module), 5
ChronoRuntimeError, 6

E

elapsed (chronometer.Chronometer attribute), 5

R

RelaxedChronometer (class in chronometer), 6
RelaxedStartChronometer (class in chronometer), 6
RelaxedStopChronometer (class in chronometer), 6
reset() (chronometer.Chronometer method), 5

S

start() (chronometer.Chronometer method), 5

start() (chronometer.RelaxedStartChronometer method),

6
started (chronometer.Chronometer attribute), 5
stop() (chronometer.Chronometer method), 5

stop() (chronometer.RelaxedStopChronometer method), 6

stopped (chronometer.Chronometer attribute), 5

11



	Examples
	API Reference
	API

	Indices and tables
	Python Module Index

